A charge analysis derived from an atomic multipole expansion

نویسندگان

  • Marcel Swart
  • Piet Th. van Duijnen
  • Jaap G. Snijders
چکیده

A new charge analysis is presented that gives an accurate description of the electrostatic potential from the charge distribution in molecules. This is achieved in three steps: first, the total density is written as a sum of atomic densities; next, from these atomic densities a set of atomic multipoles is defined; finally, these atomic multipoles are reconstructed exactly by distributing charges over all atoms. The method is generally applicable to any method able to provide atomic multipole moments, but in this article we take advantage of the way the electrostatic potential is calculated within the Density Functional Theory framework. We investigated a set of 31 molecules as well as all amino acid residues to test the quality of the method, and found accurate results for the molecular multipole moments directly from the DFT calculations. The deviations from experimental values for the dipole/quadrupole moments are also small. Finally, our Multipole Derived Charges reproduce both the atomic and molecular multipole moments exactly. c © 2000 John Wiley & Sons, Inc. J Comput Chem 22: 79–88, 2001

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of net atomic charges and atomic and molecular electrostatic moments through topological analysis of the experimental charge density

The atoms in molecules (AIM) theory may be used to derive atomic charges, atomic volumes and molecular dipole moments from the charge density. The theory is applied to theoretical periodic Hartree-Fock (PHF), density-functional (DFT) and experimental X-ray densities of p-nitroaniline using the program TOPOND and a newly developed program, TOPXD, for topological analysis of densities described b...

متن کامل

A point-charge model for electrostatic potentials based on a local projection of multipole moments

We introduce a method for obtaining atomic point-charges that yield accurate representations of the electrostatic potentials (ESP) of large systems. The method relies on a decomposition of the density and subsequent projection of the multipole moments of the density components onto neighbouring atomic sites. The resulting local multipole-derived charges (LMDCs) are well-defined, do not require ...

متن کامل

The charge density of urea from synchrotron diffraction data.

The charge density of urea is studied using very high precision single-crystal synchrotron-radiation diffraction data collected at the Swiss-Norwegian Beam Lines at ESRF. An unprecedented resolution of 1.44 A(-1) in sin theta;/lambda is obtained at 123 K. The optimization of the experiment for charge-density studies is discussed. The high precision of the data allowed the refinement of a multip...

متن کامل

Resolving a distribution of charge into intrinsic multipole moments: a rankwise distributed multipole analysis.

We present a method for the rankwise distributed multipole analysis of an arbitrary distribution of charge and its surrounding field. Using the superposition principle, the electrostatic field created by a distribution of charge can be resolved recursively into the contributions of a set of intrinsic multipole moments "tied to" their rank-specific multipole centers. The positions of the multipo...

متن کامل

Transferable atom equivalent multicentered multipole expansion method

The transferability of atomic and functional group properties is an implicit concept in chemistry. The work presented here describes the use of Transferable Atom Equivalents (TAE) to represent molecular electrostatic potential fields through the use of integrated atomic multipole moments that are associated with each TAE atom type used in the reconstruction. TAE molecular surface distributions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Computational Chemistry

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2001